9 research outputs found

    Pseudo-Boolean Programming for Partially Ordered Genomes

    Get PDF
    International audienceComparing genomes of different species is a crucial problem in comparative genomics. Different measures have been proposed to compare two genomes: number of common intervals, number of adjacencies, number of reversals, etc. These measures are classically used between two totally ordered genomes. However, genetic mapping techniques often give rise to different maps with some unordered genes. Starting from a partial order between genes of a genome, one method to find a total order consists in optimizing a given measure between a linear extension of this partial order and a given total order of a close and well-known genome. However, for most common measures, the problem turns out to be NP-hard. In this paper, we propose a (0, 1)-linear programming approach to compute a linear extension of one genome that maximizes the number of common intervals (resp. the number of adjacencies) between this linear extension and a given total order. Next, we propose an algorithm to find linear extensions of two partial orders that maximize the number of adjacencies

    A Pseudo-Boolean programming approach for computing the breakpoint distance between two genomes with duplicate genes

    Get PDF
    International audienceComparing genomes of different species has become a crucial problem in comparative genomics. Recent research have resulted in different genomic distance definitions: number of breakpoints, number of common intervals, number of conserved intervals, Maximum Adjacency Disruption number (MAD), etc. Classical methods (usually based on permutations of gene order) for computing genomic distances between whole genomes are however seriously compromised for genomes where several copies of the same gene may be scattered across the genome. Most approaches to overcoming this difficulty are based on the exemplar method (keep exactly one copy in each genome of each duplicated gene) and the maximum matching method (keep as many copies as possible in each genome of each duplicated gene). Unfortunately, it turns out that, in presence of duplications, most problems are NP–hard, and hence several heuristics have been recently proposed. Extending research initiated in [2], we propose in this paper a novel generic pseudo-boolean approach for computing the exact breakpoint distance between two genomes in presence of duplications for both the exemplar and maximum matching methods. We illustrate the application of this methodology on a well-known public benchmark dataset of gamma -Proteobacteria

    Efficient Tools for Computing the Number of Breakpoints and the Number of Adjacencies between two Genomes with Duplicate Genes

    Get PDF
    International audienceComparing genomes of different species is a fundamental problem in comparative genomics. Recent research has resulted in the introduction of different measures between pairs of genomes: reversal distance, number of breakpoints, number of common or conserved intervals, etc. However, classical methods used for computing such measures are seriously compromised when genomes have several copies of the same gene scattered across them. Most approaches to overcome this difficulty are based either on the exemplar model, which keeps exactly one copy in each genome of each duplicated gene, or on the maximum matching model, which keeps as many copies as possible of each duplicated gene. The goal is to find an exemplar matching, respectively a maximum matching, that optimizes the studied measure. Unfortunately, it turns out that, in presence of duplications, this problem for each above-mentioned measure is NP-hard. In this paper, we propose to compute the minimum number of breakpoints and the maximum number of adjacencies between two genomes in presence of duplications using two different approaches. The first one is a (exact) generic 0–1 linear programming approach, while the second is a collection of three heuristics. Each of these approaches is applied on each problem and for each of the following models: exemplar, maximum matching and intermediate model, that we introduce here. All these programs are run on a well-known public benchmark dataset of -Proteobacteria, and their performances are discussed

    On the Approximability of Comparing Genomes with Duplicates

    Get PDF
    A central problem in comparative genomics consists in computing a (dis-)similarity measure between two genomes, e.g. in order to construct a phylogeny. All the existing measures are defined on genomes without duplicates. However, we know that genes can be duplicated within the same genome. One possible approach to overcome this difficulty is to establish a one-to-one correspondence (i.e. a matching) between genes of both genomes, where the correspondence is chosen in order to optimize the studied measure. In this paper, we are interested in three measures (number of breakpoints, number of common intervals and number of conserved intervals) and three models of matching (exemplar, intermediate and maximum matching models). We prove that, for each model and each measure M, computing a matching between two genomes that optimizes M is APX-hard. We also study the complexity of the following problem: is there an exemplarization (resp. an intermediate/maximum matching) that induces no breakpoint? We prove the problem to be NP-Complete in the exemplar model for a new class of instances, and we show that the problem is in P in the maximum matching model. We also focus on a fourth measure: the number of adjacencies, for which we give several approximation algorithms in the maximum matching model, in the case where genomes contain the same number of duplications of each gene

    A Pseudo-Boolean programming approach for computing the breakpoint distance between two genomes with duplicate genes

    No full text
    International audienceComparing genomes of different species has become a crucial problem in comparative genomics. Recent research have resulted in different genomic distance definitions: number of breakpoints, number of common intervals, number of conserved intervals, Maximum Adjacency Disruption number (MAD), etc. Classical methods (usually based on permutations of gene order) for computing genomic distances between whole genomes are however seriously compromised for genomes where several copies of the same gene may be scattered across the genome. Most approaches to overcoming this difficulty are based on the exemplar method (keep exactly one copy in each genome of each duplicated gene) and the maximum matching method (keep as many copies as possible in each genome of each duplicated gene). Unfortunately, it turns out that, in presence of duplications, most problems are NP–hard, and hence several heuristics have been recently proposed. Extending research initiated in [2], we propose in this paper a novel generic pseudo-boolean approach for computing the exact breakpoint distance between two genomes in presence of duplications for both the exemplar and maximum matching methods. We illustrate the application of this methodology on a well-known public benchmark dataset of gamma -Proteobacteria

    On the Approximability of Comparing Genomes with Duplicates

    No full text
    A central problem in comparative genomics consists in computing a (dis-)similarity measure between two genomes, e.g. in order to construct a phylogeny. All the existing measures are defined on genomes without duplicates. However, we know that genes can be duplicated within the same genome. One possible approach to overcome this difficulty is to establish a one-to-one correspondence (i.e. a matching) between genes of both genomes, where the correspondence is chosen in order to optimize the studied measure. In this paper, we are interested in three measures (number of breakpoints, number of common intervals and number of conserved intervals) and three models of matching (exemplar, intermediate and maximum matching models). We prove that, for each model and each measure M, computing a matching between two genomes that optimizes M is APX-hard. We also study the complexity of the following problem: is there an exemplarization (resp. an intermediate/maximum matching) that induces no breakpoint? We prove the problem to be NP-Complete in the exemplar model for a new class of instances, and we show that the problem is in P in the maximum matching model. We also focus on a fourth measure: the number of adjacencies, for which we give several approximation algorithms in the maximum matching model, in the case where genomes contain the same number of duplications of each gene

    The SCJ Small Parsimony Problem for Weighted Gene Adjacencies

    No full text
    corecore